SCLS計算機システム講習会

遺伝子ネットワーク並列解析 プログラム「BENIGN」実習

大阪大学 大学院情報科学研究科 松田秀雄 2015/09/29

要旨

BENIGNは、複数の生体組織や実験条件下で採取された細胞内の 遺伝子の発現データから、各条件下での遺伝子間の発現の依存関 係を表すネットワークをベイジアンネットワークにより推定する ソフトウェアです。条件ごとに得られたネットワークを相互に比 較することで、例えば、時間とともに動的に変化する遺伝子間の 依存関係や、細胞組織ごとの遺伝子の働きの違いなどを推定して 可視化することができます。

BENIGNの開発では、遺伝子ネットワークの推定部分はSiGN-BNを ベースにしています。また、複数の遺伝子ネットワーク推定プロ セスの並列実行機能の実現にはMPIDP(GHOST-MPのパッケージに 含まれています)をベースにしています。

SiGN-BN: <u>http://www.scls.riken.jp/scruise/software/sign-bn.html</u> GHOST-MP: <u>http://www.scls.riken.jp/scruise/software/GHOST-MP.html</u>

BENIGNの実行

BENIGNの実行には、各種パラメータを記載したJobリストファイル、遺伝子発現データを記載したEDFファイルが必要です。なお、これらファイルの詳細については、[付録]ページを参照してください。

ここではあらかじめ用意してあるファイルを元にBENIGN の実行手順を説明します。

はじめに、BENIGNの実行に必要なファイルを置くディレ クトリを作成します。次にファイルをコピーします。

```
$ mkdir sample
$ cd sample
$ cd sample
$ cp /home/matsuda/benign/sample/adipo_stage* .
$ ls
adipo_stage1.edf adipo_stage3.edf adipo_stages.list
adipo_stage2.edf adipo_stage4.edf adipo_stages.sh
```

コピーするファイルは以下の通りです。

- Jobリストファイル
 - adipo_stages.list
- 遺伝子発現データファイル
 - adipo_stage1.edf
 - adipo_stage2.edf
 - adipo_stage3.edf
 - adipo_stage4.edf
- バッチスクリプト
 - adipo_stages.sh

実行に必要なファイルの用意 使用するJobリストファイルです。

\$ cat adipo_stages.list

TITLE=adipo_stages

```
benign -y --blocks 20 -o adipo_stage1 -N 1000 -L 1 -T 0.1 -S linear adipo_stage1.edf
benign -y --blocks 20 -o adipo_stage2 -N 1000 -L 1 -T 0.1 -S linear adipo_stage2.edf
benign -y --blocks 20 -o adipo_stage3 -N 1000 -L 1 -T 0.1 -S linear adipo_stage3.edf
benign -y --blocks 20 -o adipo_stage4 -N 1000 -L 1 -T 0.1 -S linear adipo_stage4.edf
```

TITLE行のadipo_stagesは実行ログファイルに記録されます。

以降のbenignで始まる行は遺伝子ネットワーク推定処理の引数を指定します(行ごとに並列に 実行されます)。

-y ダイナミックベイジアンネットワークモデル(時系列データの時に使用できます)。このオ プションを省略したときはベイジアンネットワークモデルが選択されます。

--blocks n 時系列データの時点数を疑似的にn倍に増やす(-yを指定した時は推奨)

-o name 出力結果のファイル名の接頭辞をnameにセット

-N num ブートストラップサンプリングをnum回実行

- -L 1 実行履歴を個別のファイルに出力(省略すると標準エラー出力にまとめられる)
- -r 0.1 ブートストラップ確率が0.1以上の制御辺のみを出力
- -S linear 遺伝子発現量を線形モデルで近似

詳細はSiGN-BNのマニュアル(http://sign.hgc.jp/signbn/manual.html)を参照して 下さい。

使用する遺伝子発現データファイル(抜粋)です。

\$ cat adipo_stage1.edf

\$Version	1.0					
@PrimaryKeyGroupID	1	1	1	2	2	2
@SecondaryKeyGroupID	1	2	3	1	2	3
Cebpa	-0.141795	-0.138312	-0.194432	-0.176802	-0.155757	-0.079616
Cebpb	-0.222724	-0.126105	0.074613	0.17421	0.233539	0.239671

- \$Version はEDFファイルのバージョン情報
- @PrimaryKeyGroupID,@SecondaryKeyGroupIDは実験サンプルID (n=3)
- Cebpa,Cebpbはマウスの遺伝子名(ヒトのC/EBPα, C/EBPβ)

使用するバッチスクリプトです。

```
$ cat adipo_stages.sh
#!/bin/sh -x
#
#PJM -L "rscgrp=small"
#PJM -L "node=5"
#PJM -L "elapse=20:00"
#
```

・リソースグループはsmall
・要求するノードは5ノード
・実行時間の最大は20分

•スレッド数は8

BENIGN=/home/matsuda/benign/bin/benign

export PARALLEL=8
export OMP_NUM_THREADS=\$PARALLEL

mpiexec \${BENIGN} -tb adipo_stages.list -lg adipo_stages.benign.log

・京コンピュータで実行するときはファイルのステージングの指示を加える必要があります
 ・Webで公開されているバイナリファイルを使用するときは、実行に先立って、
 chmod +x benignで実行可能権限のパーミッションを設定しておく必要があります

ジョブの投入

ファイルをコピーした後、pjsubコマンドを使いジョブを投 入します。

\$ pjsub adipo_stages.sh
[INFO] PJM 0000 pjsub Job XXXXX submitted.
XXXXX にはジョブIDが入ります

ジョブの投入

実行中のジョブの状況は pjstat コマンドで確認できます。

\$ pjstat

	ACCEPT	QUEUED	STGIN	READY	RUNING	RUNOUT	STGOUT	HOLD	ERROR	TOTAL
	0	0	0	0	1	0	0	0	0	1
S	0	0	0	0	1	0	0	0	0	1
JO	B_ID	JOB_N	AME MD	ST U	JSER	START_	_DATE	ELAP	SE_LIM	NODE_REQUIRE
XX	XXX	adipo	_stag NM	RUN n	natsuda	08/26	16:10:02	2 0000	:20:00	5

ジョブの投入

ジョブの完了後、以下のファイルが生成されます。

- 実行結果
 - adipo_stage1
 - adipo_stage2
 - adipo_stage3
 - adipo_stage4
- 解析処理のログ
 - adipo_stage1.log.000000
 - adipo_stage2.log.00000
 - adipo_stage3.log.000000
 - adipo_stage4.log.000000

ジョブの投入

ジョブの完了後、以下のファイルが生成されます。

- 実行ログ
 - adipo_stages.benign.log
- 標準出力ファイル
 - adipo_stages.sh.oXXXXX
- 標準エラー出力ファイル

– adipo_stages.sh.eXXXXX

実行結果ファイル(SGN3形式)は次のようになります。

\$ cat ad	ipo_stage	e1					
SiGN SGN3	FORMAT						
[Informat	ion]						
Edge Attr	BS.Prob:d	ouble	edgeScore	double	BS.Gain:do	ouble	EdgeType:int
	BS.up/down	n:string	BS.EdgeTy	peRatio:st	ring		
Node Attr	hubness:i	nt	BS.HubInd	ex:double			
X:BS.tota	l:int	1000					
[Nodes]							
Cebpa	Cebpa	0	1	0.110000			
Cebpb	Cebpb	1	8	4.853000			
Cebpd	Cebpd	2	3	1.425000			
Creb1	Crebl	3	1	0.199000			
Egr2	Egr2	4	4	1.331000			
Klf15	Klf15	5	1	0.144000			
Klf2	Klf2	б	7	3.092000			
Klf4	Klf4	7	6	3.650000			
Klf5	Klf5	8	1	0.199000			
Nr1h3	Nr1h3	9	5	3.513000			
Nr3c1	Nr3c1	10	2	1.141000			
Pparg	Pparg	11	0	0.000000			
Stat5a	Stat5a	12	2	1.722000			
Thra	Thra	13	3	0.855000			
[Edges]							
1	0	0.927000	0.927000	40.873586	0	up	1.00/0.00/0.00
3	0	0.199000	0.199000	21.401210	0	up	1.00/0.00/0.00
8	0	0.199000	0.199000	13.059605	0	up	1.00/0.00/0.00
12	0	0.726000	0.726000	24.049626	1	down	0.00/1.00/0.00

13

実行結果

最初は、[Information]セクションです。

[Information]

Edge Attr BS.Prob:double edgeScore:double BS.Gain:double EdgeType:int BS.up/down:string BS.EdgeTypeRatio:string Node Attr hubness:int BS.HubIndex:double X:BS.total:int 1000

[Nodes]、[Edges]セクションが持つ属性のリストを出力します。

実行結果

次に、[Nodes]セクションです。

[Nodes]

Cebpa	Cebpa	0	1	0.110000
Cebpb	Cebpb	1	8	4.853000
Cebpd	Cebpd	2	3	1.425000
Creb1	Crebl	3	1	0.199000
Egr2	Egr2	4	4	1.331000
Klf15	Klf15	5	1	0.144000
Klf2	Klf2	6	7	3.092000
Klf4	Klf4	7	б	3.650000
Klf5	Klf5	8	1	0.199000

実行結果

最後に、[Edges]セクションです。

[Edges]

1	0	0.927000 0.927000 40.873586	0	up	1.00/0.00/0.00
3	0	0.199000 0.199000 21.401210	0	up	1.00/0.00/0.00
8	0	0.199000 0.199000 13.059605	0	up	1.00/0.00/0.00
12	0	0.726000 0.726000 24.049626	1	down	0.00/1.00/0.00

エッジに関する情報を出力 - 親ノード番号 - 子ノード番号 - ブートストラップ確率 - 制御の符号(up:促進、down:抑制) など

実行結果

sgn2tsvコマンドで実行結果ファイル(SGN3形式)をTSV 形式に変換することができます。

先ほどのジョブの実行結果をsgn2tsvコマンドに渡すと次のようになります。

\$ /home/matsuda/benign/bin/sgn2tsv adipo_stage1
Wrote edge info to adipo_stage1.edge.tsv

実行結果

生成されたTSVファイルは次のようになります。

\$ cat adipo_stage1.edge.tsv

From	То	BinaryRegulation	Regulation	up/down/unknown	BS.Prob	edgeScore	BS.Gain
Cebpb	Cebpa	0	up	1.00/0.00/0.00	0.927	0.927	40.873586
Crebl	Cebpa	0	up	1.00/0.00/0.00	0.199	0.199	21.40121
Klf5	Cebpa	0	up	1.00/0.00/0.00	0.199	0.199	13.059605
Stat5a	Cebpa	1	down	0.00/1.00/0.00	0.726	0.726	24.049626
Egr2	Cebpb	0	up	1.00/0.00/0.00	0.283	0.283	6.670069

- 1行目はヘッダー
- 2行目以降はデータ
- 出力されるデータ
 - 接続元遺伝子
 - 接続先遺伝子
 - Regulation
 - Bootstrap Probability
 - など

実行結果の解析

実行結果ファイルを元に、ネットワークの比較、および、 描画を行うことができます。

signprocによるネットワークの比較

signprocコマンドを使ってネットワークを比較することが できます。

\$ /home/matsuda/benign/bin/signproc ¥
--read type=sgn3,file=./adipo_stage1 ¥
--comp type=sgn3,file=./adipo_stage2

実行結果は次のページのようになります。

signprocコマンドは、SiGN-BNのユーティリティプログラムです。 signprocコマンドの詳細については、[付録]および以下のサイトを参照してください。 URL: http://sign.hgc.jp/signproc.html

20

SiGN : signproc ver. 0.19.0 (Thu Aug 21 11:45:08 2014 JST) (SVN rev. 1526) Copyright (C) 2012-2014 SiGN Project Members. Filter #1 -- --read Reading a SGN3 network file... Edge Attributes: BS.Prob (double) edgeScore (double) BS.Gain (double) EdgeType (int) BS.up/down (string) BS.EdgeTypeRatio (string) Node Attributes: hubness (int) BS.HubIndex (double) In total 14 nodes and 44 edges added. Object: Network 14 nodes, 44 edges. Filter #2 -- --comp CompFilter: Reading... adipo stage2 Reading a SGN3 network file... Edge Attributes: BS.Prob (double) edgeScore (double) BS.Gain (double) EdgeType (int) BS.up/down (string) BS.EdgeTypeRatio (string) Node Attributes: hubness (int) BS.HubIndex (double) In total 14 nodes and 43 edges added. CompFilter: 0 nodes are not found in the given file (2nd network). COML: TΡ RTP FΡ FNTNSn Sp COMP: 14 5 19 22 31 0.389 0.368 Object: Network 14 nodes, 44 edges. Finished all the filters.

21

実行結果ファイルを元に、CytoscapeやGephi等を使って遺 伝子ネットワークを図示することができます。

ここではCytoscape 3でのグラフの描画手順について説明します。

まず、実行結果ファイル(SGN3形式)をsgn2tsvコマンドに渡しTSVファイルに変換します。

\$ /home/matsuda/benign/bin/sgn2tsv ./adipo_stage1
Wrote edge info to adipo_stage1.edge.tsv

sgn2tsvコマンドの実行によりエッジ情報をまとめたTSV ファイルが生成されます。

\$ ls adipo_stage1.edge.tsv
adipo_stage1.edge.tsv

生成されたTSVファイルを次の手順でCytoscapeに読み込みます。

- 1. Cytoscape を実行する
- 2. File メニュー → Import → Network → File... を選択する
- 3. 生成されたTSVファイルを選択する
- 4. Interaction Definition において
 - 1. Source InteractionにColumn 1(From)を選択する
 - 2. Interaction に Column 4(Regulation)を選択する
 - 3. Target InteractionにColumn 2(To)を選択する
 - 4. 追加情報として以下の情報を選択する
 - 1. BS.Prob
 - 2. BS.Gain
- 5. 選択後、OKボタンを押す

ファイルを読み込んだあと、Layout メニュー からレイアウトを 選択します。

- 1. Control PanelからStyleを選択する
- 2. 下部にある Edge タブを選択する
- 3. Target Arrow Shape プロパティを選択する
 - 1. Column に interaction を選択する
 - 2. Mapping Type に Discrete Mapping を選択する
 - 3. down に "T" タイプの矢印を選択する
 - 4. up に "Arrow" タイプの矢印を選択する
- 4. Layout メニュー → yFiles Layouts → Organic を選択する

benignコマンド

benignコマンドの書式は以下の通りです。

\$ benign [-lg log] -tb input [user options]

指定可能なオプションについては以下の通りです。

- -lg log
 - 任意
 - BENIGNの実行ログを指定します。
 - 指定がない場合、 mpidp.log という名前でログを出力します。
- -tb input
 - 必須
 - Jobリストファイルを指定します。
- user options

- - Ig, -tb以外のオプションは解析処理へのパラメータとして渡されます。

Jobリストファイルフォーマット

BENIGNのJobリストファイルのフォーマットは以下の通りです。

[TITLE=タイトル] パラメータ行1 パラメータ行2 ...

Jobリストファイルフォーマット

TITLE行の指定は任意であり、指定した場合、実行ログに記録されます。

パラメータ行には、空白区切りでパラメータを指定します。

以下はJobリストファイルの例です。

TITLE=example benign -y --blocks 20 -o ex1 -N 1000 -L 1 -T 0.1 -S linear gene_expl.edf benign -y --blocks 20 -o ex2 -N 1000 -L 1 -T 0.1 -S linear gene_exp2.edf benign -y --blocks 20 -o ex3 -N 1000 -L 1 -T 0.1 -S linear gene_exp3.edf

EDFファイルフォーマット

EDFは遺伝子発現データを表現するために設計された フォーマットです。

タブまたはカンマ区切りのテキストファイルで、次の3つ のパーツから構成されます。

1. メタデータセクション

- 2. 属性セクション
- 3. データセクション

EDFファイルフォーマット

以下はタブ区切りのEDFの例です。

# Meta Data Section						
\$Version 1.0						
# Attribute Section						
@PrimaryKeyGroupID	1	1	2	2	3	3
@SecondaryKeyGroupID	1	2	1	2	1	2
# Data Section						
genel	1.1	2.2	3.3	4.4	5.5	6.6
gene2	7.7	8.8	9.9	10.1	11.11	12.12
gene3	13.13	14.14	15.15	16.16	17.17	18.18

EDFファイルフォーマット

メタデータセクションでは、メタデータは"\$"から始まり、 データセット、属性セクションにある属性についてのグ ローバルな情報を定義します。

属性セクションでは、属性は"@"から始まり、発現サンプ ルの属性を定義します。

最初のカラムは属性のキーを表します。上の例では、2つの属性キーPrimaryKeyGroupIDとSecondaryKeyGroupIDが発現サンプルのために指定されています。

SecondaryKeyGroupIDは反復実験の回数を表すのに使います。 上の例では発現データでn=2の反復(replicate)で取得した場 合を表しています。

データセクションにおいて、各行は遺伝子の発現データを 表します。最初のカラムに遺伝子の名前を指定し、以降の カラムに発現データを設定します。

sgn2tsvコマンド

sgn2tsvコマンドはSGN3形式のファイルからTSVファイルを生成するためのプロ グラムです。

生成したTSVファイルはCytoscape、Gephi等グラフ描画ソフトウェアの入力デー タとして使用できます。

sgn2tsvファイルの書式は以下の通りです。

\$ sgn2tsv [-a] <SGN3ファイル>

sgn2tsvファイルにSGN3形式のファイルを渡すと、カレントディレクトリ下に <SGN3ファイル>.edge.tsvファイルが生成されます。-a オプションを指定した場合、<SGN3ファイル>.node.tsvファイルも生成されます。

生成されるファイルはそれぞれ以下の通りです。

- <SGN3ファイル>.edge.tsv
 - エッジ情報をまとめたTSVファイル
- <SGN3ファイル>.node.tsv
 - ノード情報をまとめたTSVファイル

signprocコマンド

signprocは遺伝子ネットワークファイルに様々な処理(ファ イルフォーマットの変換、サブネットワークの抽出、指定 したノードの色づけ等)を行うコマンドラインツールです。 signprocはSiGN-BNのユーティリティプログラムです。

ユーザは複数のフィルターを指定することができ、一つの フィルターは一つのネットワークを処理します。

ここでは Comp フィルターについて説明しますが、他の フィルターについては下記URLを参照してください。

http://sign.hgc.jp/signproc.html

signprocのCompフィルター

Compフィルターは2つのネットワークを比較し、結果を標準エラー出力に出力します。

コマンド例

\$ signproc --read type=sgn3,file=./adipo_stage1 --comp type=sgn3,file=./adipo_stage2

オプションは以下の通りです。

- --read type=sgn3,file=./adipo_stage1
 - 最初に読み込むネットワーク
 - type=sgn3
 - ・ ファイルフォーマット
 - file=./adipo_stage1
 - 読み込むファイル
- --comp type=sgn3,file=./adipo_stage2
 - 比較するネットワーク(真のネットワーク)
 - type=sgn3
 - ・ ファイルフォーマット
 - file=./adipo_stage2
 - 読み込むファイル

signprocのCompフィルター

COML, COMP行が比較結果です。 各値は、--compオプションで指定したadipo_stage2を真のネット ワークとした場合の adipo_stage1の枝を以下の種類ごとに数えた 値です。

- TP (True Positive)
 - 両方に存在する
- FP (False Positive)
 - adipo_stage2に存在しないが、adipo_stage1に存在する
- FN (False Negative)
 - adipo_stage2に存在するが、adipo_stage1に存在しない
- TN (True Negative)
 - 両方に存在しない

比較結果の例

COML: TP	RTP	FP	FN	ΤN	Sn	Sp
COMP: 14	5	19	22	31	0.389	0.368