「計算生命科学の基礎」 医療における計算生命科学: 不整脈における興奮伝播現象を中心に

国立循環器病研究センター研究所 中沢 一雄・稲田 慎

2015年2月3日(火)17:00~18:30

計算科学; コンピュータシミュレーションは 実験の難しい様々な分野で応用されている

- 気象
- 地球環境
- ・天体・宇宙
- 地震 津波
- 飛行機 自動車
- ・エンジン
- 建築・ビル解体
- ・ストレステスト(原発)
 などなど…

医療分野におけるコンピュータシミュレーション

 ・創薬(ドッキングシミュレーション) ・医療機器設計(人工心臓など) ・不整脈アブレーション などなど…

+ABL-2

HD Fbs 150ms

-90

-60 -30 0(mV) +ABL-4

興奮伝播(でんぱ)とは ① 伝わり広まること、広く伝わること、特に波動が広がっていくこと、

心臓突然死による年間死亡者数

不整脈とは?(心臓と刺激伝導系)

心表面マッピング

sock & snap 電極

心室細動時の興奮伝播 (N. El-Sherif et al. : Cir. Res. 51:152, 1982)

心房細動時の 興奮伝播過程

(M. A. Allessie et al.: Cardiac Electrophisiology and Arrhythmias. Grune & Stratton, 1985) 2015.2.3 計算生命科学の基礎

スパイラルリエントリー(Spiral Wave Reentry) 心臓の中に生じる台風?

optical mapping

(I. Sakuma, A. Mishima et al.)2015.2.3 計算生命科学の基礎

Spiral Wave (Rotor)の特徴 非線形興奮性媒質における興奮伝播の様式

- ・興奮前面の曲率はスパイラルの中心に近づくにつれて大きくなる
- · Source-sink mismatch により, 凸形状で曲率の大きな部分で伝導速度が低下する.
- ・スパイラル興奮波の旋回中心付近では,興奮前面の強い湾曲のため,興奮伝導が維 持できなくなり,興奮波の断端 (wave break)が生じる.
- · 位相特異性(phase singularity)
- ・端が途切れた興奮波は旋回を始め,興奮波の断端が存在する限り旋回が持続する. 2015.2.3 計算生命科学の基礎

スパイラルリエントリーに関わる古典的研究

Atrial Fibrillation

Moe GK and Abildskov JA. Am Heart J 1959

Self-organized reentrant multiple wavelet

Dr. Gordon K. Moe Am Heart J 1964

Dr. Art T. Winfree Science 1972

バーチャルハートプロジェクト(In silico study)

シミュレーションを利用した統合的理解

致死性不整脈の 興奮伝播の映像化

スーパーコンピュータ上に仮想の心臓モデル を構成し、電気生理学的シミュレーションを行う ことで、致死性不整脈のメカニズムの解明や、 予防・診断・治療に役立てる(2000年~)。

バーチャルハート

スーパーコンピュータ上に仮想的な心臓 "バーチャルハート"を構成し、コンピュ ータシミュレーションおよび可視化の技術 を用いることで、致死性不整脈発生時の異 常な興奮伝播の様子を、Spiral Wave 理 論に基づいて3次元的に映像化する。

不整脈の研究に なぜシミュレーションなのか?

不整脈を治療するには、不整脈を知る必要あり。 不整脈を知るためのアプローチは…

臨床医→患者の不整脈を調べる

実験科学者 → 動物で不整脈を起こして調べる(wet)
 ②理論科学者 → 理論で不整脈をつくって調べる(dry)
 (理屈)

コンピュータシミュレーション

Cable model (Unit model)

Kanzaki, Y. et al. Circulation 2010;122:1973-1974

- 1. 適当なサイズで心筋組織を切り出す (空間の差分化)
- 2. 代表点に適当な心筋細胞モデルを割 り当てる(ユニットモデル)
- 3. ユニットモデルを電気的に1次元的 に結合し、ケーブルモデルが完成
- 4. ケーブルモデルの2次元・3次元的な 拡張により組織・臓器モデルが完成

モノドメインモデル・バイドメインモデル

バイドメインモデル

- ・細胞内領域と細胞外領域を独立に計算して、連立させる必要がある
- ・電気ショックなどの外部からの電気刺激を再現するために必要
- ・モノドメインモデルと比較して,計算量が2桁以上多い

心筋細胞イオンチャネルモデル

Luo-Rudy Model I (1991)

 $dV/dt = -1/C(I_{Na} + I_{si} + I_{K} + I_{K1} + I_{kp} + I_{b} - I_{ext})$ $dCa/dt = -10^{-4} \cdot I_{si} + 0.07(10^{-4} - Ca)$ $dX / dt = \alpha_X (1-X) - \beta_X X$ $dj / dt = \alpha_i (1-j) - \beta_i j$ dm /dt= $\alpha_m(1-m)$ - $\beta_m m$ dd /dt= $\alpha_d(1-d)$ - $\beta_d d$ dh /dt= $\alpha_h(1-h)$ - $\beta_h h$ df /dt= $\alpha_f(1-f)$ - $\beta_f f$ $I_{Na}=23 \cdot m^3 \cdot h \cdot j \cdot (V - E_{Na}) E_{Na}=54.4$ $I_{si}=0.09 \cdot d \cdot f \cdot (V - E_{si})$ $E_{si}=7.7 - 13.0287 \cdot In(Ca)$ $I_{K}=G_{k} \cdot X \cdot X_{i} \cdot (V-E_{k})$ $G_{k}=0.282$ $E_{k}=-77$ $(V > -100) X_i = 2.837 \cdot \{exp[0.04(V+77)]-1\}$ $/\{(V+77) \cdot \exp[0.04(V+35)]\}$ (V<=-100) X_i=1 I_{K1}=G_{K1}·K1∞·(V-E_{K1}) G_{K1}=0.6047 K1∞=α_{K1}/(α_{K1}+β_{K1}) E_{K1}=-87.26 $I_{Kp}=0.0183 \cdot Kp \cdot (V - E_{Kp}) E_{Kp} = E_{K1}$ $Kp=1/{1+exp[(7.488-V)/5.98]}$ $I_{b}=0.03921 \cdot (V+59.87)$

 $\alpha_{X} = 0.0005 \cdot \exp(0.083(V+50))/\{1 + \exp(0.057(V+50))\}$ $\beta_{x} = 0.0013 \cdot \exp(-0.06(V+20))/\{1 + \exp(-0.04(V+20))\}$ $\alpha_{K1}=1.02/\{1+\exp(0.2385(V-EK1-59.215))\}$ $\beta_{K1} = \{0.49124 \cdot \exp(0.08032(V-EK1+5.476))\}$ +exp(0.06175(V-EK1-594.31))}/{1+exp(-0.5143(V-EK1+4.753))} $\alpha_m = 0.32(V+47.13)/\{1-exp(-0.1(V+47.13))\}$ $\beta_{m} = 0.08 \cdot \exp(-V/11)$ $(V \ge -40) \alpha_h = 0.0 \beta_h = 1/(0.13\{1 + \exp((V + 10.66)/-11.1)\})$ $\alpha_i = 0.0 \ \beta_i = 0.3 \cdot \exp(-2.535 \cdot 10.7 \cdot V) / \{1 + \exp(-0.1(V + 32))\}$ $(V < -40) \alpha_h = 0.135 \cdot exp((80+V)/-6.8)$ $\beta_{h}=3.56 \cdot \exp(0.079V)+3.1 \cdot 105 \cdot \exp(0.35V)$ α_{i} =[-1.2714 · 105 · exp(0.2444V)-3.474 · 10-5 · exp(-0.04391V)] ·(V+37.78)/{1+exp(0.311(V+79.23))} $\beta_i = 0.1212 \cdot \exp(-0.01052V)/(1 + \exp(-0.1378(V + 40.14))))$ $\alpha_d = 0.095 \cdot \exp(-0.01(V-5))/\{1 + \exp(-0.072(V-5))\}$ $\beta_d = 0.07 \cdot \exp(-0.017(V+44))/\{1+\exp(0.05(V+44))\}$ $\alpha_f = 0.012 \cdot \exp(-0.008(V+28))/\{1 + \exp(0.15(V+28))\}$ $\beta_{f}=0.0065 \cdot \exp(-0.02(V+30))/\{1+\exp(-0.2(V+30))\}$

NEC SX-6/8 CPU:6並列 ベクトル長:256 メモリ:12GB 理論性能:48 GFLOPS

Demonstration Movie

movie

まとめ(1)

致死性不整脈において、従来、心電 図や心表面の多点マッピングデータな どから推測していた心臓の異常な興奮 伝播の様子を、コンピュータシミュ レーションを用いた3次元可視化技術 により、きわめて直感的に表現できた。

リミテーションと課題(2002年当時)

1. 均質・等方向性伝導モデルから 不均質・異方向性伝導モデルへ ex.刺激伝導系、心室較差(M cell)、線維方向… 2. モーションへの対応→ 心臓ポンプ機能の評価 3. 患者個別心臓形状への対応 ← MR I • C T … ex.拡張型心筋症、肥大型心筋症… 4. 心房モデル 細胞モデルの改良・ユニット数の増加 5 6. 心臓モデル作成の重要性(手間がかかる) 7. 簡易モデル・自動化の必要性 ⇒ 細密モデルの更新継続は困難 8. 臨床に役立たせるためには、 スーパーコンピュータ依存では無理がある

Teddyによる簡易心臓形状モデリング スケッチするように3次元心臓形状を簡単に作ることができる

T. Igarashi, et al., "Teddy: A Sketching Interface for 3D Freeform Design", ACM SIGGRAPH'99 (Impact Paper) Los Angles, August, 1999.

S. Owada et al., "A Sketching Interface for Modeling the Internal Structures of 3D Shapes", Smart Graphics 2003, Lecture Notes in Computer Science (LNCS) vol.2733, pp.49-57, Springer-Verlag

い 臓拍動の シミュレーション FEMを用いないリアルタイム収縮モデル

RV

 $\mathbf{T}_{i}(t)$

SMN

Shape Matching Method

LV

LA RA

cut

RV

 これまでは、心室のみのモデルであったものが、新しく、心房も含めた シミュレーションも可能となる

電気的除細動のメカニズム トンネル伝播仮説

CFAE標的アブレーションのメカニズム 線維芽細胞仮説

my my how when the set of the set

CFAE (分裂電位)

線維芽細胞の分布

+ABL-2

Ashihara T, et al. APHRS 2010 Best Paper Award // Circ Res (In press)

原口ら、「3次元心室壁モデルにおけるスパイラルリエントリーのin silicoフィラメント動態解析~致死的不整脈防御機構としての心室較差の電気生理学的意義~」,生体医工学,46(6),pp.660-666 (2008)

- 1. すでに多くの分野においてコンピュータシミュレーション は必須の技術となっている。
- 2. 医学・医療分野においても、様々な応用が 試みられている。
- 私たちはできるだけ早く臨床に役立たせるため、 コンシューマレベルのPCにおいてコンピュータ グラフィクスを応用し、リアルタイムのシミュレーション を実現する心臓シミュレータの技術開発を行ってきた。
- 4. 多様なコンピュータプラットフォームにおいて、
 それぞれの目的に合ったシミュレーションの実現が
 重要と考える。

電気生理学の基礎

心臓の階層構造

心筋組織 Kanzaki et al., Circulation (2010)

心筋細胞

イオンチャネル 2015.2.3計算生命科学の基礎

細胞間

ギャップ結合

Keith, Flack (1907)

田原(1906)

His (1893)

Purkinje (1839)

イオンチャネル

心筋細胞

興奮性細胞の電位変化は、細胞膜をイオンが 通過することによって起こる。細胞膜には 特定のイオンのみが通過できる通路がある。 これをイオンチャネルという。

活動電位とイオン電流 小澤、福田編:標準生理学(医学書院)

活動電位モデルの作成

$$\begin{aligned} r_{\infty}(V) &= \frac{1.0}{1.0 + \exp((V - 7.44)/-16.4)} \\ \tau_{r}(V) &= (0.596 \times 10^{-3}) + \frac{3.188 \times 10^{-3}}{1.037 \exp(0.09(V + 30.61)) + 0.396 \exp(-0.12(V + 23.84))} \\ \frac{dr}{dt} &= \frac{r_{\infty} - r}{\tau_{r}} \\ q_{\infty}(V) &= \frac{1.0}{1.0 + \exp((V + 33.8)/6.12)} \\ \tau_{q_{\text{fast}}}(V) &= 0.1266 + \frac{4.72716}{1.0 + \exp((V + 154.5)/23.96)} \\ \tau_{q_{\text{slow}}}(V) &= 0.100 + 4.000 \exp(-(V + 65.0)^{2}/500.0) \\ \frac{dq_{\text{fast}}}{dt} &= \frac{q_{\infty} - q_{\text{fast}}}{\tau_{q_{\text{fast}}}} \\ \frac{dq_{\text{slow}}}{dt} &= \frac{q_{\infty} - q_{\text{slow}}}{\tau_{q_{\text{slow}}}} \\ I_{10} &= g_{10}r(0.45q_{\text{fast}} + 0.55q_{\text{slow}})(V - E_{\text{K}}) \end{aligned}$$

細胞の電気生理学的特性を計測し、
 計測データを基に、活動電位を
 再現することができる数学モデルを
 作成する。
 2015.2.3計算生命科学の基礎

Hodgkin-Huxley model (1952)

細胞膜とイオンチャネルの 模式図

電気回路によるモデル化

計算により得られた活動電位

Hodgkin

Huxley

世界で初めて構築された活動電位 モデル(神経細胞)。活動電位、 イオン電流モデルの基礎である。 2015.2.3計算生命科学の基礎

心筋細胞活動電位モデル

I. Cell geometry

1. Conground 1, Let only only the set of th

And, for all range of V, $\alpha_{m}=0.32(V+47.13)[1-\exp[-0.1(V+47.13)]];$ $\beta_{m}=0.08 \cdot \exp(-V/11).$ Currents through the L-type Ca²⁺ channel

 $\begin{array}{l} \text{Contraction interval of the L-type Carter channel } \\ I_{Ca}=I_{Ca}+I_{Ca}K+I_{Ca}K, \\ I_{Ca}=d\cdot f\cdot f_{Ca}\cdot I_{Ca}; \quad I_{Ca}K=d\cdot f\cdot f_{Ca}\cdot \tilde{I}_{Ca}K, \\ \text{For ion S, including Ca}^{2*}, Na^*, \text{ and } K^*, \end{array}$

$$\begin{split} \tilde{I}_{n} = P_{n} + c_{n}^{2} + \frac{VF}{2} + \frac{N_{n}^{-1} \left[S\right] - \exp(\alpha_{n}VFR(T) - \gamma_{n}, s\left[S\right])}{\exp(\alpha_{n}VFR(T) - \alpha_{n}, s\left[S\right])}, \\ P_{n} = 5.5\times10^{-1} \cos(N_{n} - \gamma_{n}, s-\gamma_{n}, s-1, s\left[S\right]), \\ P_{n} = 1.9\times10^{-1} \cos(N_{n} - \gamma_{n}, s-\gamma_{n}, s-1, s\left[S\right]), \\ P_{n} = 1.9\times10^{-1} \cos(N_{n}, s-\gamma_{n}, s-\gamma_{n}, s-1, s\left[S\right]), \\ d_{n} = 1/[1 + eq(C^{-1})K_{n}, s\left[S\right]), \\ A_{n} = 1/[1 + eq(C^{-1})K_{n}, s\left[S\right]), \\ d_{n} = 1/[1 + eq(C^{-1})K_{n}, s\left[S\right]), \\ d_{n}$$

 $\tau_t = 1/(0.019^{-1} \cdot \exp[-[0.033^{-1} \cdot (v+10)f] + 0.02];$ $\alpha_0 = d_u/\tau_0; \quad \beta_0 = (1-d_u)/\tau_0; \quad \alpha_t = f_u/\tau_t; \text{ and } \beta_t = (1-f_u)/\tau_t.$

 $\begin{array}{l} {\rm Time-dependent}\; K^{*}\; {\rm current}:\; {\rm I}_{{\rm K}} \\ {\rm I}_{{\rm K}} = {\rm G}_{*}, {\rm X}, {\rm X}' : (V = {\rm E}_{{\rm K}}); \; {\rm P}_{{\rm esc}} = 0.01833; \\ {\rm E}_{{\rm K}}^{*} = ({\rm RT}/{\rm F}) \cdot \ln([({\rm K}'_{-}) + {\rm P}_{{\rm sc}}, {\rm M}^{*}]_{*}))({\rm K}^{*}_{-}) + {\rm P}_{{\rm sc}}, {\rm g}[{\rm Na}^{*}]_{*})); \\ {\rm G}_{{\rm K}}^{*} = 0.282 \cdot \sqrt{[{\rm K}^{*}_{-}]_{*}} {\rm A} \; {\rm millisimens} \mu_{{\rm H}}; \\ {\rm X} = 1/[1 + {\rm esc}_{{\rm H}}(V = 50.6)(23); \\ {\rm esc}^{*} = 1/2 \times 10^{-1} \cdot (V + 30)(1 - {\rm esc})(-148 \cdot (V + 30))]; \; {\rm and} \\ {\rm B}_{{\rm m}} = 1.3 \times 10^{-1} \cdot (V + 30)(1 - {\rm esc})(0.687 \cdot (V + 30))]; \end{array}$

d. Time-independent K⁺ current: Ig $\begin{array}{l} \text{Imenopencent } K \cdot \text{current} :_{40} \\ = & G_{6}, K1, (-E_{6}); E_{6}, \text{eff}(RTF) \cdot \ln[K^*]_{2}[K^*]); \\ & G_{6}, \text{e}.0.57 \cdot \sqrt{[K^*]_{5}54}, \text{millisemens} \mu F; \\ & \alpha_{6}, \text{i}.0.2[1 + \exp[0.2385 \cdot (V - E_{6}, - 5.215)]; \text{and} \\ & \beta_{6} = [0.3912 + \exp[0.00302 \cdot (V - E_{6}, + 5.45)] + \exp[0.06175 \cdot (V - E_{6}, - 594.31)]_{2}[1 + \exp[-0.5143 \cdot (V - E_{6}, + 4.753)]. \end{array}$ e. Plateau K' current: IKe $\begin{array}{l} I_{kp} = \overline{G}_{kp} \cdot Kp \cdot (V - E_{kp}); \quad \overline{G}_{kp} = 0.0183 \text{ millisiemens}/\mu F; \\ E_{kp} = E_{k1}; \quad \text{and } Kp = 1/\{1 + \exp\{(7.488 - V)/5.98\}\}. \end{array}$ f. Na*-Ca2+ exchanger: INGa $I_{NaCa} \!=\! k_{NaCa} \cdot \frac{1}{K_{\pi,Na}^{2} \!+\! [Na^{+}]_{0}^{1}} \cdot \frac{1}{K_{\pi,Ca} \!+\! [Ca^{2*}]_{0}} \cdot \frac{1}{1 \!+\! k_{sat}} \cdot exp \! \left[(\eta \!-\! 1) \cdot V \cdot \frac{F}{RT} \right]$ $\cdot \left\{ exp\left(\eta \cdot V \cdot \frac{F}{RT} \right) [Na^+]_3^3 \cdot [Ca^{2+}]_2 - exp\left[(\eta - 1) \cdot V \cdot \frac{F}{RT} \right] [Na^+]_2^3 \cdot [Ca^{2+}]_3 \right\}$ $K_{NaCa} = 2000 \ \mu A/\mu F; K_{m,Na} = 87.5 \ mmol/L; K_{m,Ca} = 1.38 \ mmol/L; k_{us} = 0.1; and \eta = 0.35$ g. Na⁺-K⁺ pump: I_{NaK} [K*] $I_{NaK} \!=\! \bar{I}_{NaK} \cdot f_{NaK} \cdot \frac{1}{1\!+\! (K_{m,Na}/[Na^*]_i)^{1.5}} \cdot \frac{1}{[K^*]_o\!+\! K_{m,Ko}}$ $\tilde{I}_{NaK}=1.5 \ \mu A/\mu F; K_{mNai}=10 \ mmol/L; K_{mKo}=1.5 \ mmol/L;$ $=\frac{1}{1+0.1245 \cdot \exp\left(-0.1 \cdot \frac{VF}{RT}\right)+0.0365 \cdot \sigma \cdot \exp\left(-\frac{VF}{RT}\right)}$ $\sigma = \frac{1}{7} \cdot \left[\exp\left(\frac{[Na^*]_o}{67.3}\right) - 1 \right].$ h. Nonspecific Ca2+-activated current: I_{m(Ca)} $I_{m,K} = \overline{I}_{m,K} \cdot \frac{1}{1 + (K_{m,m(Ca)}/[Ca^{2+}])^3}$ $I_{m,Na} \!=\! \overline{I}_{m,Na} \cdot \frac{1}{1\!+\! (K_{m,m(Ca)}/[Ca^{2+}])^3}$ $I_{\alpha_8Ca} = I_{m,K} + I_{m,Na};$ $P_{m(Ca)} = 1.75 \cdot 10^{-7} \text{ cm/s};$ $K_{m,m(Ca)} = 1.2 \ \mu \text{mol/L};$ and RT [K*].+[Na*], $E_{n(Ca)} = \frac{K}{F} \cdot \ln \frac{K}{[K^*] + [Na^*]}.$ (I_{ss} is computed from P_{as} using the relation in IIIb of this appendix with the same γ values.) i. Sarcolemmal Ca2+ pump: InCa $I_{p(Ca)} = \tilde{I}_{p(Ca)} \cdot \frac{[Ca^{2+}]}{K_{n,p(Ca)} + [Ca^{2+}]};$ $\bar{I}_{\mu(Ca)} \approx 1.15 \ \mu A/\mu F; K_{m,\mu(Ca)} = 0.5 \ \mu mol/L.$ j. Ca2+ background current: Icab $I_{Cab} = \overline{G}_{Cab} \cdot (V - E_{CaN});$ $E_{Ca,N} = (RT/2F) \cdot \ln[[Ca^{2+}]_{a}/[Ca^{2+}]_{b}];$ and $\overline{G}_{Ca,b} = 0.003016$ millisiemens/ μ F. k. Na⁺ background current: INAB $I_{Nub} = \overline{G}_{Nub} \cdot (V - E_{Nub}); E_{Nub} = E_{Nu}; and \overline{G}_{Nub} = 0.00141 \text{ millisiemens}/\mu F$ 1. Total time-independent current: L. $I_V = I_{K1} + I_{Kp} + I_{p(Ca)} + I_{Na,b} + I_{Ca,b} + I_{NaK}$

各イオンの役割

Na⁺: 活動電位の上昇(脱分極) →興奮の伝導・伝播に重要 Ca²⁺: 興奮した活動電位の維持, 心筋細胞の収縮 K⁺: 活動電位を下降させる(再分極)

IV. Ca ²⁺ buffers in the myoplasm	Modifications for FSK model					
Troponin (TRPN) and calmodulin (CMDN);	Itotal	=	$d \cdot f \cdot f_{Ca}^2 \cdot (\overline{I}_{Ca} + \overline{I}_{monovalent})$			
buffered [TRPN]=[TRPN] \cdot {[Ca ²⁺]/([Ca ²⁺],+K _{m,TRPN}));	ca(a)					
buffered [CMDN]=[CMDN] \cdot [[Ca ^{**}]/[[Ca ^{**}]+K _{mCMDN}];	d	_	1.0			
$[1\text{RPN}] = 70 \ \mu\text{mol/L}; \ [CMDN] = 50 \ \mu\text{mol/L}; \ \mathbf{K}_{m,\text{TRPN}} = 0.5 \ \mu\text{mol/L}; \ \text{and} \ \mathbf{K}_{m,\text{CMDN}} = 2.38 \ \mu\text{mol/L}.$	-00		$1.0 + \exp\left(-\frac{V_{m}+3.0}{6.0}\right)$			
V. Ca ²⁺ fluxes in the sarcoplasmic reticulum			10 - (V-+30)			
$I_{at} = G_{at} \cdot ([Ca^{2+}]_{sp} - [Ca^{2+}]) \text{ mmol/L per millisecond}$	Td	=	$d_{\infty} \cdot \frac{1.0 - \exp(-\frac{1.0}{6.0})}{0.007(15 + 0.0)}$			
If $\Delta [Ca^{2+}]_{2} > \Delta [Ca^{2+}]_{2} > 2$ milliseconds after the time of \dot{V}_{-1} .			$0.035(V_{\rm m} + 3.0)$			
$\Delta[C_{n}^{2+1}] = \Delta[C_{n}^{2+1}]$	f	=	$0.524f_1 + 0.376f_2 + 0.1$			
$G_{rel} = \overline{G}_{rel} \cdot \frac{M[Ca^{-1}j_{12} - M[Ca^{2}+1] - A[Ca^{2}+1]}{K + A[Ca^{2}+1] - A[Ca^{2}+1]} \cdot (1 - exp[-t/\tau_{os}]) \cdot exp[-t/\tau_{os}];$	-					
$\Delta [Ca^{2+}]_{\alpha} = 0.18 \ \mu \text{mol}/L; K_{\alpha,\alpha} = 0.8 \ \mu \text{mol}/L; \tau_{\alpha} = \tau_{\alpha} = 2 \ \text{milliseconds; } t=0 \ \text{at time of CICR;}$	fim	=	1.0			
$\overline{G}_{rol} = 18 \text{ ms}^{-1}$ for voltage clamp simulations; and			$1.0 + \exp\left(\frac{V_m + 19.7}{6.0}\right)$			
$\overline{G}_{nl}=60 \text{ ms}^{-1}$ for action potential simulations.			1.0			
If Δ [Ca ²⁺] ₁₂ < Δ [Ca ²⁺] _{10h} at 2 milliseconds, $\overline{G}_{rel}=0$.	$f_{2\infty}$	=	$1.0 + \exp{\left(\frac{V_m + 33.7}{2}\right)}$			
b. Ca ²⁺ release of JSR under Ca ²⁺ -overload conditions						
$I_{ml} = G_{ml} \cdot (Car \cdot J_{SR} = (Car \cdot J_{sl}) \text{ minior L per minisecond}$			387.0 - 194.0			
If buffered $[CSQN] \ge [CSQN]_{th}$, $C_{th} = \overline{C}_{th} + (1 - amf - t/a) + amf - t/a$	71	-	$0.138 \cdot \left(194.0 + 10.0 + $			
$G_{rel} = G_{rel} \cdot (1 - exp[-t/\tau_{on}]) \cdot exp[-t/\tau_{ot}],$ $G_{rel} = 4 \text{ ms}^{-1}$. [CSON], =0.7 or bioher: and $\tau = \tau$.=2 milliseconds: and t=0 at time of spontaneous release						
Khuffared [COSN] <[COSN] Z =0	T2	=	$194.0 + \frac{387.0 - 194.0}{194.0 - 194.0}$			
c. Ca ²⁺ buffer in JSR and CSQN	2		$1.0 + \exp\left(\frac{V_m + 33.7}{6.0}\right)$			
Buffered [CSQN]=[CSQN] · {[Ca ²⁺] _{JSR} /([Ca ²⁺] _{JSR} +K _{m,CSQN})}; [CSQN]=10 mmol/L; and K _{m,CSQN} =0.8 mmol/L	-		$V = F^2 [C_0^{2+}]_{exp} (2V = F/(BT)) = 0.341 [C_0^{2+}]_{exp}$			
d. Ca ²⁺ uptake and leakage of NSR: I _{ap} and I _{kak}	\overline{I}_{Ca}	=	$P_{\text{Ca}} \cdot \frac{r_{\text{m}}T}{RT} \frac{[\text{ca}]_{\text{l}} \exp(2r_{\text{m}}T/(RT)) = 0.041[\text{ca}]_{\text{l}}}{\exp(2V_{\text{c}}F/(RT)) = 1.0}$			
$I_{ep} = I_{ep} \cdot [Ca^{**}]/([Ca^{**}] + K_{m,p}) \text{ mmol/L per millisecond};$ $I_{test} = K_{test} \cdot [Ca^{**}]_{SSR} \text{ mmol/L per millisecond};$			iti (ayarmi /(iti)) ito			
$K_{map} = 0.92 \ \mu mot/L$; $I_{ap} = 0.005 \ mmot/L$ per minisecond; $K_{a} = 1 \ (\overline{C_{2}}^{2_{a}}) - ms^{-1}$; and $\overline{C_{2}}^{2_{a}} - 15 \ mmot/J$.	7		$540.0P_{Ca}(V_m - E_{monovalent})$			
Transferration of Co ² t into form NED to ISD 1	- monoralem		$1.0 - T_{Ca}/1.227$			
L = ([Ca ²⁺) _{sep} – [Ca ²⁺] _{sep}) τ_{a} mmol/L per millisecond; τ_{a} = 180 milliseconds.						
A fee box fee bike a superior become a fee	Ix.	=	$y_1 q_{Kr} x_r r \left(V_m - E_K \right)$			
	dy_i	=	$y_{i\infty} - y_i$			
	dt		η			
		_	αi			
	9100		$\alpha_i + \beta_i$			
			1.0			
	$\tau_{1\infty}$	-	$\overline{\alpha_i + \beta_i}$			
	$\alpha_{quinidise-type}$		$= 0.5716 + 0.7522 \exp(0.05094V_m)$			
	$\beta_{\text{quintifie-type}} = 0.752$ $\sigma_{\text{vessarinose-type}} = 0.5$ $\beta_{\text{vessarinose-type}} = \frac{0.5}{2}$		a mag (a analistic 10			
			$= 0.7522 \exp \left(0.00094 V_m \frac{M}{\text{preparation of the states}} - 1.0\right)$			
			= 0.5			
			0.5 (10 - 10)			
			$= \frac{0.0 \left(\frac{1}{\text{Wopolarization, remarkation} - type} - 1.0\right)}{\left(-(V_c + 16.5)\right)}$			
			$1.0 + \exp\left(\frac{-\sqrt{-6} + 16.0}{12.6}\right)$			
			1.0			
	$5.025 \times 10^5 \cdot [quinidine] + 1.0$					
	Edenolation.ventrione_type = 1.0					
	proposession, vessarinose – type $ 8.20 \times 10^5 \cdot [vesnarinone] + 1.0$					

2015.2.3計算生命科学の基礎

Findlay, Kurachi et al., Prog Biophys Mol Biol (2008)

組織モデルの作成 (ケーブルモデル)

Kanzaki et al., Circulation (2010)

(1)細胞の集合に活動電位モデルを割り当てる。これをユニットと呼ぶ。
(2)隣接するユニット間を細胞内同士で電気的に接続する。

ペースメーカー細胞の不均質構造の検討

洞結節の不均質構造

Kodama and Boyett, Pflügers Arch (1985) 2015.2.3計算生命科学の基礎

計測システムの開発

システム外観

アンプ回路 2015.2.3計算生命科学の基礎

洞結節内の不整脈

→興奮発生位置が移動する

稲田ほか,生体医工学(2002) 2015.2.3計算生命科学の基礎

均質モデル(非正常例)

不均質モデル(非正常例)

不均質モデル(正常例)

正常な心拍の条件

洞結節中心から興奮発生
洞結節周辺から興奮発生
興奮伝導の異常
興奮が伝導しない
細胞群全体が同時に興奮する
興奮が発生しない

まとめ

- 洞結節構造の不均一性の重要性を コンピュータシミュレーションで示した
 - ・自動能の発生
 - ・心房への興奮伝導

今後の展望

- ・ 刺激伝導系全体のシミュレーション
 - 心臓の制御機構の解明
- ・ 洞結節の異常が原因となる不整脈治療への応用
 - 薬物作用のシミュレーション
- 再生医療研究への応用
 - 移植前に心臓組織の安全性を確認

房室結節の多重興奮伝導経路

3次元モデルの構築

5.53 5.63 5.73 5.79 5.92 6.08 6.22 6.35 6.46 6.54 6.75 6.86 7.00 7.42 7.48 7.60 7.68 7.78 7.89 8.00 8.11 8.23 8.42 8.56 8.67 7.19 Connective tissue Cx43-negative nodal tissue Cx43-positive nodal tissue densely-packed atrial muscle Dorsal ■densely-packed nodal tissue ■fatty tissue Right+ → Left loosely-packed atrial muscle tendon of Todaro vein Ventral ventricular muscle

3次元モデル

切片モデル(2次元)

ケーブルモデルの構築

房室結節内の不整脈

抗不整脈薬による心室調律

Control

Antiarrhythmic drug

プルキンエ不整脈

プルキンエ線維

- ・速い興奮伝導(200 cm/s)
- ・ 心室への興奮伝導や心室の収縮に重要な 役割を果たしている
- ・心室頻拍や心室細動などの心室性不整脈の 中には、プルキンエ線維起源のものもある

細胞間ギャップ結合の変異

- ・細胞間のギャップ結合は、細胞間の 電気的興奮の伝導経路である
- 細胞間ギャップ結合の変異が心室性不整脈を 有する患者より見つかった (Makita et al., 2012)
- ギャップ結合の変異と不整脈との関連は 不明である

プルキンエ線維の構造モデル

Tawara (1906)

Atkinson, Inada et al., J Mol Cell Cardiol (2011) 2015.2.3計算生命科学の基礎

プルキンエ線維一心室モデル

正常な興奮伝導

ギャップ結合の変異による頻拍の発生

リエントリーが発生し、頻拍が持続した

アブレーション(焼灼)による頻拍の停止

アブレーションにより頻拍は停止した

まとめ

- ・プルキンエ線維一心室モデルを構築した
- 細胞間の電気的結合力が興奮伝導に与える 影響について検討した
 - 結合力の低下によりリエントリーが発生した
 - リエントリーの発生要因
 - •細胞間の電気的結合力
 - プルキンエ線維の不均一構造
- プルキンエ線維をターゲットとした
 アブレーション(焼灼)によるリエントリー停止の可能性を示した

謝 辞

•

٠

•	児玉	逸雄	(名古	屋大	学)		
•	神谷	香一自	郎 (名	古屋	大学)		
•	本荘	晴朗	(名古	屋大	学)		
•	佐久	間 一島	『 (東	京大	学)		
•	荒船	龍彦	(東京	電機	大学)		
•	山口	豪(金沢大	学)			
•	柴田	仁太郎	邬 (新	宿三	<mark>井</mark> ビル	クリニッ	ック
•	杉町	勝([国立循	環器	病研究	センタ・	—)
•	稲垣	正司	(国立	循環	器病研	究セン	タ-
•	相庭	武司	(国立	循環	器病研	究セン	タ-
•	砂川	賢二	(九州	大学)		
•	池田	隆徳	(東邦	大学)		
•	岩田	倫明	(国立	循環	器病研	究セン	ター
•	原口	亮([国立循	環器	病研究	センタ・	—)

- 倉智 嘉久 (大阪大学)
- 村上 慎吾 (大阪大学)
- 津元 国親 (大阪大学)
- 大森 健太 (大阪大学)
- 五十嵐 健夫 (東京大学)
- ・ 大和田 茂 (SONY CSL)
- 井尻 敬 (理化学研究所)
- / 高山 健志 (国立情報学研究所)
 - 梅谷 信行 (東京大学)
- 山下 富義 (京都大学)
 - 難波 経豊 (難波医院)
- 藤堂 貴弘 (姫路獨協大学)
- 芦原 貴司 (滋賀医科大学)