計算生命科学の基礎

分子動力学計算と生体高分子の機能解析: タンパク質の動的構造と機能

神戸大学大学院工学研究科 応用化学専攻 中津井雅彦

アウトライン

• (古典)分子動力学計算とは

- (古典)分子動力学計算の概要
- 運動方程式
- 数値解法
- 力場
- 境界条件
- 実例
 - タンパク質・リガンド間の結合自由エネルギー予測 (MP-CAFEE法)

 原子を「質量を持つ粒子」とみなし、古典力学の 運動方程式を解くことで位置を求める

$$\boldsymbol{F_i} = m_i \frac{d^2 \boldsymbol{r_i}(t)}{dt^2} = m_i \boldsymbol{a_i}$$

$$F_i$$
 質点が受ける力
 m_i 質点の質量
 r_i 質点の位置

a_i 質点iの加速度

古典力学に基づいているため、 量子的な効果は計算しない

粒子を動かすための力は、

経験的に決められたポテンシャルの空間微分

加速度・力・質量の時刻に対する微分方程式 初期座標・初期速度・力・質量がわかれば、 任意の時刻の座標を計算できる

ただし、解析的に解けないので、数値的に解く必要がある

"The science of simulating the motions of a system of particles" (Karplus & Petsko)

(古典)分子動力学計算の概要

- 決定論的な手法
 - 将来の時間における系の状態が、現在の状態から予測できる
- 分子動力学計算のサイクル
 - 1. 一定の短い時間刻みの間に、各々の原子にかかる力を定数として予測する
 - 2. 各々の原子の現在の座標および速度と、1. で計算した各々の 粒子へかかる力から、一定の短い時間刻み後の原子の座標およ び速度を計算する

短い時間刻みごとに、原子の座標のスナップショットを得る

トラジェクトリ

(古典)分子動力学計算の流れ

(古典)分子動力学計算に必要な情報

- 原子の三次元座標
 - X線結晶解析, NMR等
 - 無料の公的データベース

• PDB

- 原子の電荷情報 (原子にかかる力を計算する際に使用)
 - タンパク質(アミノ酸や主要な金属原子等)
 - それ以外の化合物
 - 量子計算により求める

タンパク質の立体構造を取得する

X線決勝解析、NMR等の手法によって原子レベルの分解能で解析された タンパク質・核酸・糖などの生体高分子の立体構造 PDBj, RCSB PDB, EBI PDBe

タンパク質の立体構造を取得する PDBフォーマット

🖳 C:¥Users¥Masahiko¥Downloads¥1AKI.pdb - 秀丸 🛛 – 🗆 💌									
ファイル(E) 編集(E)	表示(⊻)	検索(<u>5</u>)	ウィンドウ('W) マクロ(M) その他(0)	¥.			349:81
3 🖸 M	2 1	\gg 12	Q	QL Q1	0 0	0			
»	<u>, 10 , , , 1</u>			130 JEL 100E		11 000		uu lu gu	8
347 ATOM		LISA		35.365	22.342	-11.980	1.00 22.28	N	*
348 ATUM	Z LA	LISA	4	30.892	21.073	-11.427	1.00 21.12		4 h
250 ATOM		LIO A I VO A		04.741 22 045	20.204	-10.044	1.00 10.00		
251 ATOM	4 U 5 CD	LIS A	4	00.040 20.072	20.010	-10.001	1.00 10.04		4
352 ATOM	40 C	LIGA	2	27 152	21.433	-9 565	1 00 20.78	c c	NKC VEC
352 ATOM	7 CD	LISA	1	32 622	20.240 20.649	-8 775	1 00 20 32	c c	Ψ.
354 ATOM	8 CE	LIO A	3	39 057	19 508	-7 837	1 00 24 76	Č.	
355 ATOM	9 NZ	IYS A	1	40 423	19 771	-7 299	1 00 28 27	Ň	Ť.
356 ATOM	10 N	VAL A	2	34 739	18 961	-11 042	1 00 19 96	N	
357 ATOM	11 CA	VAL A	2	33,903	17.998	-10.333	1.00 18.10	Ċ	4
358 ATOM	12 C	VAL A	2	34.800	17.312	-9.294	1.00 19.39	Č	4
359 ATOM	13 0	VAL A	2	35.759	16.605	-9.665	1.00 22.14	Ō	\downarrow
360 ATOM	14 CB	VAL A	2	33.140	17.034	-11.232	1.00 16.81	С	\downarrow
361 ATOM	15 CG1	VAL A	2	32.251	16.084	-10.434	1.00 21.92	С	4
362 ATOM	16 CG2	VAL A	2	32.294	17.714	-12.290	1.00 19.46	С	4
363 ATOM	17 N	PHE A	3	34.491	17.546	-8.038	1.00 19.89	N	\downarrow
364 ATOM	18 CA	PHE A	3	35.185	16.903	-6.918	1.00 17.43	С	4
365 ATOM	19 C	PHE A	3	34.742	15.441	-6.771	1.00 15.70	С	\downarrow
366 ATOM	20 0	PHE A	3	33.525	15.162	-6.862	1.00 18.52	0	4
367 ATOM	21 CB	PHE A	3	34.967	17.632	-5.594	1.00 17.94	С	\downarrow
368 ATOM	22 CG	PHE A	3	35.944	18.737	-5.375	1.00 16.78	C	4
369 ATOM	23 CD1	PHE A	3	35.666	20.050	-5.798	1.00 15.97	Ç	\downarrow
370 ATOM	24 CD2	PHE A	3	37.000	18.557	-4.473	1.00 19.95	Ç	+
371 ATOM	25 CE1	PHE A	3	36.577	21.076	-5.568	1.00 17.32	C	4
372 ATUM	26 CE2	PHE A	3	37.869	19.589	-4.15/	1.00 17.65	C	+
373 ATUM	ZI CZ	PHEA	3	37.636	20.873	-4.666	1.00 17.91	U U	*
374 ATUM	28 N	GLYA	4	35.724	14.639	-6.331	1.00 16.79	N	-
375 ATUM	29 CA	GLYA	4	35.366	13.280	-5.870	1.00 16.34	U O	*
077 ATOM	30 C	GLIA	4	34.924	13.420	-4.415	1.00 11.91	U O	*
秀 下	次	単 分	t tį]t°-	貼 97	· 79}	行… 日本語(Shift-JIS	5) 挿2	₹-۴

Lysozyme (1AKI.pdb)

原子ごとに、**三次元座標**が記述されている

X, Y, Z座標 (Å 単位)

原子を配置する

球境界条件 周期境界条件 真空 C 6 基本セル イメージセル

球境界条件では、球境界付近での水の挙動が不自然になることがある

$$\boldsymbol{F_i} = m_i \frac{d^2 \boldsymbol{r_i}(t)}{dt^2} = m_i \boldsymbol{a_i}$$

数値積分には、初期座標・初期速度の両方が必要

初期速度の与え方

- 初期速度を与えずにMDを行う
- ボルツマン分布に従うように初期速度を発生させる

$$f(v_x, v_y, v_z) = \left(\frac{m}{2\pi kT}\right)^{\frac{3}{2}} \exp\left(-\frac{m(v_x^2 + v_y^2 + v_z^2)}{2kT}\right)$$
$$f_1(v_x) = \left(\frac{m}{2\pi kT}\right)^{\frac{1}{2}} \exp\left(-\frac{mv_x^2}{2kT}\right) \quad (正規分布)$$

(古典)分子動力学計算の流れ

ニュートンの法則

- 第一法則 (慣性の法則)
 - 外力を受けない質点は、等速直線運動を行う
 - (数学的には、第二法則に含まれる)

• 第二法則 (運動方程式)

- 質量mの質点の座標rは、質点に働く力Fを用いて、以下のよう に表すことができる

$$\boldsymbol{F_i} = m_i \frac{d^2 \boldsymbol{r_i}(t)}{dt^2} = m_i \boldsymbol{a_i}$$

- *F_i* 質点が受ける力 *m_i* 質点の質量
- r_i 質点iの位置
- *a_i* 質点*i*の加速度
- 第三法則(作用反作用の法則)

$$F_{ij} = -F_{ji}$$

その他の重要な法則

- 力の重ね合わせの原理
 - – 質点に複数の力F^a, F^b, F^c, …が働くときに、質点はその和Fが 働いた場合と同様にふるまう

 $F = F^a + F^b + F^c + \cdots$

以上の基本原理を使って、質量を持つ粒子を 動かしていく

"The science of simulating the motions of a system of particles" (Karplus & Petsko)

運動方程式の数値解法

- 運動方程式は解析的に解けないため、数値積分を行う。
- 数値積分により、次のステップの位置を計算する

 $\mathbf{r}_i(t_0) \rightarrow \mathbf{r}_i(t_0 + \Delta t) \rightarrow \mathbf{r}_i(t_0 + 2\Delta t) \rightarrow \cdots \mathbf{r}_i(t_0 + n\Delta t).$

F = m
$$\ddot{r}(t)$$
 = ma
 $r(t + \Delta t) = r(t) + \Delta t v(t) + \frac{\Delta t^2}{2!} \ddot{r}(t) + O(\Delta t^3)$
 $r(t + \Delta t) = r(t) + \Delta t v(t) + \frac{\Delta t^2}{2!} \frac{F(t)}{m} + O(\Delta t^3)$
 $v(t + \Delta t) = v(t) + \Delta t \ddot{v}(t) + O(\Delta t^2)$
 $v(t + \Delta t) = v(t) + \Delta t \frac{F(t)}{m} + O(\Delta t^2)$

• 初期座標・初期速度があれば、数値的に解ける

$$r(t + \Delta t) = 2r(t) - r(t - \Delta t) + \frac{\Delta t^2 F(t)}{m} + O(\Delta t^4)$$

運動方程式の数値解放 (蛙飛び法)

(古典)分子動力学計算の流れ

各々の原子にかかる「力」を計算する

タンパク質に働く力

- 静電相互作用
- ファンデルワールス相互作用
- 水素結合
- ・ 疎水性相互作用
 (水の存在が重要)

ポテンシャルエネルギー

経験的な「力場」関数により、原子の座標を元に計算する ポテンシャルエネルギーを微分することで、原子に働く力が得られる

$$F_{i} = -\operatorname{grad}_{i} E_{i}$$

grad_i = $\boldsymbol{e}_{x} \frac{\partial}{\partial x_{i}} + \boldsymbol{e}_{y} \frac{\partial}{\partial y_{i}} + \boldsymbol{e}_{z} \frac{\partial}{\partial z_{i}}$

Molecular Mechanics Method (MM法)

分子構造に関する経験的な概念を数学的に記述

Molecular dynamics simulations and drug discovery, Jacob D Durrant and J Andrew McCammon, BMC Biology 2011, 9:71

原子の位置によって、エネルギーが決まる

共有結合に関するポテンシャル

 $K_r \big(r - r_{eq} \big)^2$

結合長 (bond length)

r

共有結合に関するポテンシャル

$$E_{\text{torsion}} = \frac{1}{2} V_{\phi} [1 + \cos(n\phi - \gamma)]$$
$$E_{\text{improper torsion}} = \frac{1}{2} V_{\varphi} [1 + \cos(n\varphi - \gamma)]$$

非結合項のエネルギー (クーロンカ)

 $E_{\text{electrostatic}} = \frac{q_i q_j}{4\pi \varepsilon r_{ii}}$

q_i:原子iの電荷 q_j:原子jの電荷

符号が異なる場合: 斥力 符号が等しい場合: 引力 力の大きさは、距離に反比例する

計算系全体の静電エネルギーは、系を構成するすべての原子ペアに対する 静電エネルギーの和で表される

 $E_{\text{electrostatic}} = \sum_{i < i} \frac{q_i q_j}{4\pi \varepsilon r_{ij}}$

非結合項のエネルギー (ファンデルワールスカ)

計算系全体のファンデルワールス・エネルギーは、系を構成する すべての原子ペアに対するファンデルワールス・エネルギーの和で表される

$$E_{\text{van der Waals}} = \sum_{i < j} \left(\frac{A_{ij}}{r_{ij}^{12}} - \frac{B_{ij}}{r_{ij}^6} \right)$$

粗視化モデルと全原子モデル

- 粗視化モデル(ユナイテッド原子モデル)
 - 複数の原子を一つの粒子として扱う
 - 重元素と、それに結合する水素原子など
 - CHARMm19, GROMOS96等

- 全原子モデル
 - 水素原子も含め、全ての原子を別個の粒子として扱う
 - OPLS, Amber, CHARMm22, CHARMm27等

分子力場の種類

- OPLS
 - 結合と結合角のパラメータはAmber ff94と同じ
 - 二面角・非結合のパラメータを独自に決定
- Amber
 - ff94, ff96, ff99, ff03, ff99SB, ff99SB-ILDN等
 - ff94, ff99: ヘリックス構造を取りやすい
 - ff96 シート構造を取りやすい
- CHARMm
 - CHARMm19: 粗視化原子モデル, タンパク質
 - CHARMm22: 全原子モデル, タンパク質&水
 - CHARMm27: 全原子モデル, DNA, RNA, 脂質

Amber分子力場の比較

実質的な自由度が二面角 φ, ϕ のみの最小単位であるアラニンジペプチドや、 グリシンジペプチドを用いて φ, ϕ のパラメータを決定する

アラニンテトラペプチドの構造式

Comparison of Multiple Amber Force Fields and Development of Improved Protein Backbone Parameters, Viktor Hornak, Robert Abel, Asim Okur, Bentley Strockbine, Adrian Roitberg, and Carlos Simmerling, PROTEINS: Structure, Function, and Bioinformatics, 65:712-725 (2006)

アラニンテトラペプチド

ff94	グリシンジペプチドにて主鎖二面角φ,φの値を推定後、 アラニンジペプチドにて二面角φ',φ'の値を推定
ff96	φ,φ(φ = φ)の値を、アラニンテトラペプチドの伸張・ ヘリックス状態のエネルギー差を再現するように調整
ff99	アラニンジペプチドの高精度量子計算により $arphi, \phi$ の値を推定
ff99SB	グリシンジペプチドにてφ,φを推定後、 アラニンジペプチドによりφ',φ'の値を推定
ff03	溶媒中での環境を直接QMで計算し、電荷と二面角を求める
ff99SB-ILDN	ff99SBでφ',φ'が再現できないイソロイシン、ロイシン、
	アスパラギン酸、アスパラギンを用いて、 φ', ϕ' を最適化

Hornakらの比較

アラニンテトラペプチドの構造式

Comparison of Multiple Amber Force Fields and Development of Improved Protein Backbone Parameters, Viktor Hornak, Robert Abel, Asim Okur, Bentley Strockbine, Adrian Roitberg, and Carlos Simmerling, PROTEINS: Structure, Function, and Bioinformatics, 65:712-725 (2006)

アラニンテトラペプチド

Gly3, Ala3の、*φ*,ψに関する自由エネルギーマップ Amber ff99SB, ff03, ff94, ff99, ff94GSの比較 (80ns, 水分子TIP3Pでのシミュレーション)

下記論文のFig. 3.

Comparison of Multiple Amber Force Fields and Development of Improved Protein Backbone Parameters, Viktor Hornak, Robert Abel, Asim Okur, Bentley Strockbine, Adrian Roitberg, and Carlos Simmerling, PROTEINS: Structure, Function, and Bioinformatics, 65:712-725 (2006)

Comparison of Multiple Amber Force Fields and Development of Improved Protein Backbone Parameters, Viktor Hornak, Robert Abel, Asim Okur, Bentley Strockbine, Adrian Roitberg, and Carlos Simmerling, PROTEINS: Structure, Function, and Bioinformatics, 65:712-725 (2006)

分子力場の比較

Are Protein Force Fields Getting Better? A Systematic Benchmark on 524 Diverse NMR Measurements, Kyle A. Beauchamp, Yu-Shan Lin, Rhiju Das, and Vijay S. Pande, Jornal of Chemical Theory and Computation, 8. 1409-1414, 2012

水分子の力場

	点数	結合長(Å)	結合角(∠HOH [°])	qH	qО	qM	qL
SPC	᠈ᇰᆍᆍᆕᆈ	1	109.47	0.41	-0.82		
TIP3P	3点モナル	•		0.417	-0.834		
TIP4P	4点モデル	0.9572	104.52	0.52	0	-1.04	
TIP5P	5点モデル	•		0.241	0		-0.241

水分子の力場

TIP3P

TIP4P

TIP5P

Model	密度 ρ, g/cm ³	蒸発熱 ⊿H _{vap} , kcal/mol	定圧比熱 C _{p,} cal/mol・deg	等温圧縮率 10 ⁶ K,atm ⁻¹	熱膨張係数 10 ⁵ a, deg ⁻¹	誘電率 ٤	拡散係数 10 ⁵ D, cm²/s
SPC	0.985	10.74	20	60±4	106±8	60±10	3.9
TIP3P	1.002	10.41	20	64±5	92±8	88±6	5.1
TIP4P	1.001	10.65	20	60±45	44±8	60±10	3.3
TIP5P	0.999	10.46	29	41±2	63±6	82±2	2.6
Exptl.	0.997	10.51	19	45.8	25	78.3	2.3

実験値との一致が良い 実験値との一致が悪い

Jorgensen, W. L. et al.: Proc. Natl. Acad. Sci. USA, 102, 6665 (2005), Table 2より引用

遠距離相互作用の計算: 境界条件

球境界条件 周期境界条件 真空 基本セル

đ

球境界条件では、球境界付近での水の挙動が不自然になる

イメージセル

クーロン相互作用・ファンデルワールス相互後作用の計算量 $\propto N^2$ 結合に関する計算量 $\propto N$

カットオフ法:もっとも単純な近似法

クーロンカは、 r_{ij}^{-1} 、ファンデルワールスカは r_{ij}^{-6} に比例して減衰する

クーロン力は減衰が遅いため、 長距離相互作用を考慮する必要がある

ベルレの帳簿法(距離によるカットオフ)

- 1. 相互作用を計算しようとしている分子からの距離が $r_c + \Delta r$ よりも 短い距離にある全ての分子をリストアップ
- 2. 一定のステップ数が経過するまでは、1. でリストアップした分子 のみをエネルギー計算の対象とする

クーロン相互作用・ファンデルワールス相互後作用の計算量 ∝ N²

カットオフ法: もっとも単純な近似法

クーロンカは、 r_{ij}^{-1} 、ファンデルワールスカは r_{ij}^{-6} に比例して減衰する

クーロン力は減衰が遅いため、 長距離相互作用を考慮する必要がある

系に周期性があることを利用して、エネルギーや力をフーリエ級数展開する 無限遠からの影響を考慮する 周期的境界条件下での静電相互作用 $E_{\text{electrostatic}}(\boldsymbol{r}_1, \boldsymbol{r}_2, \dots, \boldsymbol{r}_N) = \frac{1}{2} \sum_{i=1}^{r} \sum_{i=1}^{r} \sum_{j=1}^{r} \frac{q_i q_j}{4\pi\varepsilon[\boldsymbol{r}_i - \boldsymbol{r}_i + n]}$ 収束が遅い Ewald法では、上記の式を以下のように表す $E_{\text{electrostatic}}(\mathbf{r}_N) = E_{\text{real}} + E_{\text{wave}} + E_{\text{self}}$ $E_{\text{real}} = \frac{1}{2} \sum_{n} \sum_{i} \sum_{j} \frac{q_i q_j \operatorname{erfc}(\alpha | \boldsymbol{r}_i - \boldsymbol{r}_j + n |)}{4\pi \varepsilon | \boldsymbol{r}_i - \boldsymbol{r}_j + n |} \quad (補助関数により)収束が速い$ $erfc(x) = 1 - \operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_{\alpha}^{\infty} \exp(-t^2) dt$ $E_{\text{wave}} = \frac{2\pi}{V} \sum_{i} \frac{\exp\left(-\frac{|\boldsymbol{m}|^2}{4\alpha^2}\right)}{|\boldsymbol{m}|^2} \sum_{i} \sum_{j} \frac{q_i q_j}{4\pi\varepsilon} \cos[\boldsymbol{m} \cdot (\boldsymbol{r}_i - \boldsymbol{r}_j)] \quad 収束が速い$

Ewald法やParticle Mesh Ewald法(PME法)は、系の電荷の和が0であることが前提系の電荷が0でない場合は、電荷を中和する(0にする)必要がある

イオンを発生させる

- 電荷を中和させるだけのイオン(Na+, Cl-など)を、溶媒に加える (溶媒分子を置き換える)
- 溶質の全原子に電荷を分散させる
- アミノ酸の電荷状態を調節する

分子動力学シミュレーションの実際の流れ

- 1. 構造情報の取得(PDB等)
- 2. 構造情報の確認、欠失領域の補完

電荷、水素原子

3. シミュレーションボックスの定義

境界条件の設定(カットオフ距離を考慮)

- 4. 水分子の追加
- 5. 電荷の中和

イオンの追加等

- 6. エネルギー最小化 (最急勾配法等)
- 7. 系の平衡化(NVT -> NPT)
- 8. プロダクトラン

実際の分子動力学計算

9. トラジェクトリの解析

バイオグリッドHPCIプロジェクト「新薬開発を加速する「京」インシリコ創薬基盤の構築」 KBDD (K supercomputer-based drug discovery project by Biogrid pharma consortium)

MP-CAFEE法*による、 タンパク質-リガンド間結合自由エネルギーの計算

^{*}H. Fujitani, et. al., "Massively parallel computation of absolute binding free energy with well-equilibrated states", Physical Review E, 79, 021914, (2009)

- 「タンパク質計算科学 基礎と創薬への応用」,神谷成敏・肥後順一・福西快文・中村春木,共 立出版, 2009
- 「コンピュータ・シミュレーションの基礎[第2版]」, 岡崎進・吉井範行, 化学同人, 2011
- 「生体系のコンピュータ・シミュレーション」, 岡崎進・岡本祐幸 編, 化学同人, 2002
- Improved side-chain torsion potentials for the Amber ff99SB protein force field, Kresten Lindorff-Larsen, Stefano Piana, Kim Palmo, Paul Maragakis, John L Klepeis, Ron O Dror, and David E Shaw, Proteins, 78(8), 1950-1958, 2010
- 「生体分子の分子動力学シミュレーション(1) 方法」, 古明地勇人, 上林正巳, 長嶋雲兵, J.
 Chem. Software, Vol. 6, No. 1, pp. 1-36, 2000
- Are Protein Force Fields Getting Better? A Systematic Benchmark on 524 Diverse NMR Measurements, Kyle A. Beauchamp, Yu-Shan Lin, Rhiju Das, and Vijay S. Pande, Jornal of Chemical Theory and Computation, 8. 1409-1414, 2012
- Comparison of Multiple Amber Force Fields and Development of Improved Protein Backbone Parameters, Viktor Hornak, Robert Abel, Asim Okur, Bentley Strockbine, Adrian Roitberg, and Carlos Simmerling, PROTEINS: Structure, Function, and Bioinformatics, 65:712-725 (2006)